博客
关于我
Leetcode 121. 买卖股票的最佳时机(DAY 26) ---- 动态规划学习期
阅读量:207 次
发布时间:2019-02-28

本文共 1408 字,大约阅读时间需要 4 分钟。

代码实现与优化分析

在编写股票交易最大利润计算代码时,常见的思路是通过遍历所有价格数据,寻找最低买点和最高卖点,从而计算最大交易利润。然而,这种方法虽然直观,但在实际应用中往往效率较低,无法应对大规模数据的处理需求。

以下是两种实现方案:

第一种实现(C语言版本)

int maxProfit(int* prices, int pricesSize) {    int i, min = INT_MAX, max = -1, profit = -1;    for (i = 0; i < pricesSize; i++) {        if (prices[i] < min) {            min = prices[i];            max = prices[i];        } else {            if (max > -1) {                if (prices[i] - min > profit) {                    profit = prices[i] - min;                }            }        }    }    return profit;}

第二种实现(C++语言版本)

#include 
#include
class Solution {public: int maxProfit(std::vector
& prices) { int size = prices.size(); if (size == 0) return 0; int minBuy = prices[0]; int maxSell = 0; for (const auto& num : prices) { if (num - minBuy > maxSell) { maxSell = num - minBuy; } if (num < minBuy) { minBuy = num; } } return maxSell; }};

优化思路

  • 减少重复遍历:在第二种实现中,我们避免了重复遍历所有数据,直接在单个循环中维护当前的最低买点和最高卖点,从而减少了时间复杂度。

  • 逻辑优化:通过直接比较当前价格与最低买点之间的利润,避免了不必要的计算,使得代码更加简洁高效。

  • 异常处理:在第二种实现中,我们增加了对空数据集合的处理,确保程序在 Edge Case 中也能稳定运行。

  • 代码对比与分析

    • C语言版本:虽然直观,但在多次遍历数据时效率较低,且难以维护和扩展。
    • C++语言版本:通过优化逻辑,减少了不必要的比较操作,提升了运行效率,同时代码结构更加清晰,便于维护和扩展。

    总结

    选择合适的语言和算法设计至关重要。在实际应用中,C++版本的实现效率更高且代码质量更优。对于需要处理大规模数据的场景,建议采用第二种实现方案。

    转载地址:http://shji.baihongyu.com/

    你可能感兴趣的文章
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    Numpy闯关100题,我闯了95关,你呢?
    查看>>
    nump模块
    查看>>